The present activity The Physics of Floating Ball introduces us to the world of flying objects and the scientific principles behind them. Gigantic Aircrafts which lifts off the ground uses the same principles which are demonstrated in the present activity. The present activity emphasizes a fundamental understanding of fluid dynamics and the concept of lift force which is produced due to the difference in air pressure.
Key Concepts
Gravity
Air pressure
Fluid dynamics
Background
The ball floats in the air because the fast-moving stream of air produced by the blower pushes the ball upwards balancing the weight of the ball (downward force of gravity). Hence, the ball floats in the air. But why doesn’t the ball move sideways away from the stream? It is also interesting to observe that the ball is pulled back into the air stream when we try to pull it out of the air stream. All these observations can hint us about the actual working principle behind the lift of an aircraft.
Principle
The Coandă Effect
Bernoulli’s Principle
Materials Required
Air Blower or Hairdryer
Plastic Ball
How to Make a Ball float in the Air (Procedure)
1. Turn on the air blower or the hair dryer and point it straight up.
2. Now carefully try to balance the ball above the air stream and once it is done, you can move your hand away from the stream.
3. We will observe that the ball moves in the air up and down for some time. Later the ball floats in the air in an equilibrium position just above the jet of air.
4. Try tilting the airstream to one side. We can observe that the ball floats in the air up to some angle before it falls down when we further tilt the flow.
5. Now perform the same experiment by moving the ball towards the wall. We can observe that the ball moves to a greater height when it is near the wall.
“Also try floating inflated balloon in the air stream. You might place a coin inside the balloon for added weight.”
How Does it Work?
The ball floats in the air because the fast-moving stream of air produced by the blower pushes the ball upwards balancing the weight of the ball (downward force of gravity). Hence, the ball floats in the air.
Further, the ball stays within the air stream without moving sideways because when the fast-moving air hits the ball, the air gets deflected towards the sides and must have moved away from the ball but Bernoulli’s principle states that fast-moving air creates low pressure. Since the ball is under the influence of a fast-moving stream of air, low pressure is developed around the ball which causes the deflected air to follow the curved surface of the ball instead of moving away from the ball. This also causes the ball to move towards the low-pressure area. This phenomenon of air to follow curved surfaces is called the Coandă effect.
The Coandă effect named after Romanian aerodynamics pioneer Henri Coandă is the governing principle behind this demonstration.
When the ball is pulled towards one side due to the Coandă effect, the other side develops low pressure due to rapid moving air which causes the ball to move the opposite side. Hence the ball continuous to move left and right until all the forces are balanced in every direction.
Watch the demonstration of floating ball
Watch the video How to float a ping pong ball on air – The Coandă Effect by Dianna (Physics Girl)
Q&A
Why does the ball move to a greater height when it is near the wall?
When we go near the wall with the ball balanced on the air stream, the high pressure build-up below the surface of the ball further increases due to the presence of wall which obstructs the air to expand outward, thus forcing the ball to move to a greater height.
Real-World Application
1. The Coandă effect has several important applications especially in the field of aeronautics.
2. The Coandă effect is used in the high lift devices in aircrafts. The high lift devices include wing flaps and slats which generate additional lift for the aircraft.
3. Several experimental aircrafts such as Avrocar are designed using the Coandă effect.
4. The NOTAR helicopter also called as no tail rotor uses the Coandă effect to replace the conventional tail Rotor.
5. STOL (short takeoff and landing) aircraft have also been developed using the Coandă effect.
Popular Culture
Practical demonstration of the floating Ping Pong ball is widely circulated all throughout the internet. Teachers and Educators all across the globe, demonstrate the working principle of aircraft using this experiment. The following experiment is extensively performed using a small Ping Pong Ball or sometimes even with an ordinary balloon. The fast-moving air stream which is required for the experiment is produced using a hairdryer.
Glimpse of Workshop
Glossary
Aerodynamic Lift
A Fluid (liquid or gas) flowing past the surface of a body exerts an upward force on it which is called as Lift. If the fluid is air, then it is called the aerodynamic lift. In liquids especially in water, the force exerted on the body is called as a hydrodynamic lift.
Bernoulli’s Principle
Bernoulli’s principle establishes the relationship between the pressure and the velocity components of the fluid. It states that increases in speed of fluid occur simultaneously with the decrease in pressure in the fluid. In simple terms, it can be stated as pressure and velocity are inversely proportional, if the pressure increases the velocity decreases and vice versa.
Coandă effect
Tendency of a fast moving stream of fluid to stay attached to a convex surface such as ball is called as the Coandă effect
Fluid dynamics
Fluid dynamics is the branch of Physics which deals with flow of fluids. Liquids and gases are considered as fluids.
Interested in Science Experiments? – Explore More at Experiments
References
Physics Girl Youtube Channel
Hair Dryer Gravity Defier – Levitate a ball on an invisible stream of air
Coandă effect – Wikipedia
Bernoulli’s principle – Wikipedia
Best of Starry Stories
1. Read about the The Physics of Floating Ball
2. Read about the Did You Just Spot a Cheetah a Leopard and a Jaguar
3. Read about the Which is the Largest Delta in the World?
4. Read about the Chlorophyll and Haemoglobin – An Unlikely Connection
5. Read about the What is the True Colour of the Coronavirus?
6. Read about Why Do Fish Not Freeze in Cold Water?